Minimal scenario of criticality for electroweak scale, neutrino masses, dark matter, and inflation

Author:

Hamada Yuta,Kawai Hikaru,Kawana Kiyoharu,Oda Kin-ya,Yagyu Kei

Abstract

AbstractWe propose a minimal model that can explain the electroweak scale, neutrino masses, Dark Matter (DM), and successful inflation all at once based on the multicritical-point principle (MPP). The model has two singlet scalar fields that realize an analogue of the Coleman–Weinberg mechanism, in addition to the Standard Model with heavy Majorana right-handed neutrinos. By assuming a $$Z_2 $$ Z 2 symmetry, one of the scalars becomes a DM candidate whose property is almost the same as the minimal Higgs-portal scalar DM. In this model, the MPP can naturally realize a saddle point in the Higgs potential at high energy scales. By the renormalization-group analysis, we study the critical Higgs inflation with non-minimal coupling $$\xi |H|^2 R$$ ξ | H | 2 R that utilizes the saddle point of the Higgs potential. We find that it is possible to realize successful inflation even for $$\xi =25$$ ξ = 25 and that the heaviest right-handed neutrino is predicted to have a mass around $$10^{14}$$ 10 14 $$\mathrm{GeV}$$ GeV to meet the current cosmological observations. Such a small value of $$\xi $$ ξ can be realized by the Higgs-portal coupling $$\lambda _{SH}\simeq 0.32$$ λ SH 0.32 and the vacuum expectation value of the additional neutral scalar $$\langle \phi \rangle \simeq 2.7$$ ϕ 2.7  TeV, which correspond to the dark matter mass 2.0 TeV, its spin-independent cross section $$1.8\times 10^{-9}$$ 1.8 × 10 - 9  pb, and the mass of additional neutral scalar 190 GeV.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higgs potential criticality beyond the Standard Model;Physical Review D;2023-11-21

2. Freeze-in of WIMP dark matter;Physical Review D;2023-09-29

3. Baby universes in 2d and 4d theories of quantum gravity;Journal of High Energy Physics;2022-12-19

4. Leptogenesis triggered by a first-order phase transition;Journal of High Energy Physics;2022-09-06

5. Cosmology of a supercooled universe;Physical Review D;2022-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3