A novel determination of non-perturbative contributions to Bjorken sum rule

Author:

Yu Qing,Wu Xing-GangORCID,Zhou Hua,Huang Xu-Dong

Abstract

AbstractBased on the operator product expansion, the perturbative and nonperturbative contributions to the polarized Bjorken sum rule (BSR) can be separated conveniently, and the nonperturbative one can be fitted via a proper comparison with the experimental data. In the paper, we first give a detailed study on the pQCD corrections to the leading-twist part of BSR. Basing on the accurate pQCD prediction of BSR, we then give a novel fit of the non-perturbative high-twist contributions by comparing with JLab data. Previous pQCD corrections to the leading-twist part derived under conventional scale-setting approach still show strong renormalization scale dependence. The principle of maximum conformality (PMC) provides a systematic and strict way to eliminate conventional renormalization scale-setting ambiguity by determining the accurate $$\alpha _s$$ α s -running behavior of the process with the help of renormalization group equation. Our calculation confirms the PMC prediction satisfies the standard renormalization group invariance, e.g. its fixed-order prediction does scheme-and-scale independent. In low $$Q^2$$ Q 2 -region, the effective momentum of the process is small and in order to derive a reliable prediction, we adopt four low-energy $$\alpha _s$$ α s models to do the analysis, i.e. the model based on the analytic perturbative theory (APT), the Webber model (WEB), the massive pQCD model (MPT) and the model under continuum QCD theory (CON). Our predictions show that even though the high-twist terms are generally power suppressed in high $$Q^2$$ Q 2 -region, they shall have sizable contributions in low and intermediate $$Q^2$$ Q 2 domain. Based on the more accurate scheme-and-scale independent pQCD prediction, our newly fitted results for the high-twist corrections at $$Q^2=1\;\mathrm{GeV}^2$$ Q 2 = 1 GeV 2 are, $$f_2^{p-n}|_{\mathrm{APT}}=-0.120\pm 0.013$$ f 2 p - n | APT = - 0.120 ± 0.013 , $$f_2^{p-n}|_\mathrm{WEB}=-0.081\pm 0.013$$ f 2 p - n | WEB = - 0.081 ± 0.013 , $$f_2^{p-n}|_{\mathrm{MPT}}=-0.128\pm 0.013$$ f 2 p - n | MPT = - 0.128 ± 0.013 and $$f_2^{p-n}|_{\mathrm{CON}}=-0.139\pm 0.013$$ f 2 p - n | CON = - 0.139 ± 0.013 ; $$\mu _6|_\mathrm{APT}=0.003\pm 0.000$$ μ 6 | APT = 0.003 ± 0.000 , $$\mu _6|_{\mathrm{WEB}}=0.001\pm 0.000$$ μ 6 | WEB = 0.001 ± 0.000 , $$\mu _6|_\mathrm{MPT}=0.003\pm 0.000$$ μ 6 | MPT = 0.003 ± 0.000 and $$\mu _6|_{\mathrm{CON}}=0.002\pm 0.000$$ μ 6 | CON = 0.002 ± 0.000 , respectively, where the errors are squared averages of those from the statistical and systematic errors from the measured data.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference99 articles.

1. J.D. Bjorken, Applications of the chiral $$U(6)\times (6)$$ algebra of current densities. Phys. Rev. 148, 1467 (1966)

2. J.D. Bjorken, Inelastic scattering of polarized leptons from polarized nucleons. Phys. Rev. D 1, 1376 (1970)

3. P.L. Anthony et al. [E142 Collaboration], Deep inelastic scattering of polarized electrons by polarized $$^3He$$ and the study of the neutron spin structure. Phys. Rev. D 54, 6620 (1996)

4. K. Abe et al. [E143 Collaboration], Precision measurement of the proton spin structure function $$g_1^{p}$$. Phys. Rev. Lett. 74, 346 (1995)

5. K. Abe et al. [E143 Collaboration], Precision measurement of the deuteron spin structure function $$g_1^{d}$$. Phys. Rev. Lett. 75, 25 (1995)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3