Standard Model in Weyl conformal geometry

Author:

Ghilencea D. M.

Abstract

AbstractWe study the Standard Model (SM) in Weyl conformal geometry. This embedding is truly minimal with no new fields beyond the SM spectrum and Weyl geometry. The action inherits a gauged scale symmetry D(1) (known as Weyl gauge symmetry) from the underlying geometry. The associated Weyl quadratic gravity undergoes spontaneous breaking of D(1) by a geometric Stueckelberg mechanism in which the Weyl gauge field ($$\omega _\mu $$ ω μ ) acquires mass by “absorbing” the spin-zero mode of the $${\tilde{R}}^2$$ R ~ 2 term in the action. This mode also generates the Planck scale and the cosmological constant. The Einstein-Proca action emerges in the broken phase. In the presence of the SM, this mechanism receives corrections (from the Higgs) and it can induce electroweak (EW) symmetry breaking. The EW scale is proportional to the vev of the Stueckelberg field. The Higgs field ($$\sigma $$ σ ) has direct couplings to the Weyl gauge field ($$\sigma ^2\omega _\mu \omega ^\mu $$ σ 2 ω μ ω μ ). The SM fermions only acquire such couplings for non-vanishing kinetic mixing of the gauge fields of $$D(1)\times U(1)_Y$$ D ( 1 ) × U ( 1 ) Y . If this mixing is present, part of the mass of Z boson is not due to the usual Higgs mechanism, but to its mixing with massive $$\omega _\mu $$ ω μ . Precision measurements of Z mass then set lower bounds on the mass of $$\omega _\mu $$ ω μ which can be light (few TeV). In the early Universe the Higgs field can have a geometric origin, by Weyl vector fusion, and the Higgs potential can drive inflation. The dependence of the tensor-to-scalar ratio r on the spectral index $$n_s$$ n s is similar to that in Starobinsky inflation but mildly shifted to lower r by the Higgs non-minimal coupling to Weyl geometry.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3