Abstract
Abstract is a flexible open-source tool which, given the Standard Model or any of its extensions, allows to (i) fit the model parameters to a given set of experimental observables; (ii) obtain predictions for observables. can be used either in Monte Carlo mode, to perform a Bayesian Markov Chain Monte Carlo analysis of a given model, or as a library, to obtain predictions of observables for a given point in the parameter space of the model, allowing to be used in any statistical framework. In the present version, around a thousand observables have been implemented in the Standard Model and in several new physics scenarios. In this paper, we describe the general structure of the code as well as models and observables implemented in the current release.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference148 articles.
1. A. Caldwell, D. Kollár, K. Kröninger, BAT—the Bayesian analysis toolkit. Comput. Phys. Commun. 180, 2197–2209 (2009). arXiv:0808.2552
2. A.C. Caldwell, D. Kollár, K. Kröninger, BAT—the bayesian analysis toolkit. J. Phys. Conf. Ser. 219, 032013 (2010)
3. F. Beaujean, A. Caldwell, D. Kollár, K. Kröninger, BAT—the bayesian analysis toolkit. J. Phys. Conf. Ser. 331, 072040 (2011)
4. M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson. JHEP 08, 106 (2013). [arXiv:1306.4644]
5. L. Reina, J. de Blas, M. Ciuchini, E. Franco, D. Ghosh, S. Mishima, M. Pierini, L. Silvestrini, Precision constraints on non-standard Higgs-boson couplings with HEPfit. PoS EPS–HEP2015, 187 (2015)
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献