Author:
Buras Andrzej J.,Gérard Jean-Marc
Abstract
AbstractFor direct CP-violation in $$K\rightarrow \pi \pi $$K→ππ decays, the usual isospin-breaking effects at the percent level are amplified by the dynamics behind the $$\Delta I=1/2$$ΔI=1/2 rule and conventionally encoded in $$\Omega _\mathrm{IB}$$ΩIB parameters. The updated prediction $$\Omega _\mathrm{IB}^{(8)}=(15.9\pm 8.2)\times 10^{-2}$$ΩIB(8)=(15.9±8.2)×10-2 of the Chiral Perturbation Theory for the strong isospin-breaking due to $$\pi _3-\eta _8$$π3-η8 mixing confirms such a tendency but is quite sensitive to the theoretical input value of the low-energy constant corresponding to the flavour-singlet $$\eta _0$$η0 exchange contribution in this truncated octet scheme. We rather exploit the phenomenological $$\eta _8-\eta _0$$η8-η0 mixing as a probe for the non-negligible flavour-singlet component of the physical $$\eta $$η pole to find $$\Omega _\mathrm{IB}^{(9)}=(35\pm 7)\times 10^{-2}$$ΩIB(9)=(35±7)×10-2 in a complete nonet scheme. A large central value in the nonet scheme is thus substituted for a large uncertainty in the octet one. Including the experimental $$\pi ^+-\pi ^0$$π+-π0 mass difference as the dominant electromagnetic isospin-breaking, we obtain for the effective parameter entering the ratio $$\varepsilon '/\varepsilon $$ε′/ε an improved result $$\hat{\Omega }_\mathrm{eff}^{(9)}=(29\pm 7)\times 10^{-2}$$Ω^eff(9)=(29±7)×10-2 to be compared with $$\hat{\Omega }_\mathrm{eff}^{(8)}=(17\pm 9)\times 10^{-2}$$Ω^eff(8)=(17±9)×10-2 used in recent analyses of $$\varepsilon '/\varepsilon $$ε′/ε. Accordingly, we get a reduction from $$(\varepsilon '/\varepsilon )_\text {SM}^{(8)}=(17.4\pm 6.1)\times 10^{-4}$$(ε′/ε)SM(8)=(17.4±6.1)×10-4 to $$(\varepsilon '/\varepsilon )_\text {SM}^{(9)}=(13.9\pm 5.2)\times 10^{-4}$$(ε′/ε)SM(9)=(13.9±5.2)×10-4 and thereby an effective suppression of $$(\varepsilon '/\varepsilon )_\text {SM}$$(ε′/ε)SM by isospin-breaking corrections as large as $$40\%$$40% relative to the recent RBC-UKQCD value.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference41 articles.
1. A.J. Buras, M. Gorbahn, S. Jäger, M. Jamin, Improved anatomy of $$\varepsilon ^{\prime }/\varepsilon $$ in the standard model. JHEP 11, 202 (2015). arXiv:1507.06345
2. T. Kitahara, U. Nierste, P. Tremper, Singularity-free next-to-leading order $$\Delta $$ S = 1 renormalization group evolution and $$\epsilon _K^{\prime }/\epsilon _K$$ in the Standard Model and beyond. JHEP 12, 078 (2016). arXiv:1607.06727
3. M. Cerdà-Sevilla, M. Gorbahn, S. Jäger, A. Kokulu, Towards NNLO accuracy for $$varepsilon^{\prime }/\varepsilon $$. J. Phys. Conf. Ser. 800(1), 012008 (2017). arXiv:1611.08276
4. M. Cerdá-Sevilla, NNLO QCD Contributions to $$\varepsilon ^\prime /\varepsilon $$. Acta Phys. Polon. B 49, 1087–1096 (2018)
5. RBC, UKQCD Collaboration, Z. Bai et al., Standard model prediction for direct CP violation in $$K\rightarrow \pi \pi $$ decay. Phys. Rev. Lett. 115, 21 212001 (2015). arXiv:1505.07863
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Leading directions in the SMEFT: Renormalization effects;Physical Review D;2024-04-16
2. 50 Years of quantum chromodynamics;The European Physical Journal C;2023-12-12
3. Kaon theory: 50 years later;Progress of Theoretical and Experimental Physics;2023-09-26
4. Climbing NLO and NNLO summits of weak decays: 1988–2023;Physics Reports;2023-06
5. Kaon physics overview;Journal of Physics: Conference Series;2023-02-01