Searching for periodic signals in kinematic distributions using continuous wavelet transforms

Author:

Beauchesne Hugues,Kats Yevgeny

Abstract

AbstractMany models of physics beyond the Standard Model include towers of particles whose masses follow an approximately periodic pattern with little spacing between them. These resonances might be too weak to detect individually, but could be discovered as a group by looking for periodic signals in kinematic distributions. The continuous wavelet transform, which indicates how much a given frequency is present in a signal at a given time, is an ideal tool for this. In this paper, we present a series of methods through which continuous wavelet transforms can be used to discover periodic signals in kinematic distributions. Some of these methods are based on a simple test statistic, while others make use of machine learning techniques. Some of the methods are meant to be used with a particular model in mind, while others are model-independent. We find that continuous wavelet transforms can give bounds comparable to current searches and, in some cases, be sensitive to signals that would go undetected by standard experimental strategies.

Funder

Israel Science Foundation

Azrieli Foundation

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3