PASSAT: particle accelerator helioScopes for Slim Axion-like-particle deTection

Author:

Bonivento Walter M.,Kim DoojinORCID,Sinha Kuver

Abstract

AbstractWe propose a novel method to search for axion-like particles (ALPs) at particle accelerator experiments. ALPs produced at the target via the Primakoff effect subsequently enter a region with a magnetic field, where they are converted to photons that are then detected. Dubbed Particle Accelerator helioScopes for Slim Axion-like-particle deTection (PASSAT), our proposal uses the principle of the axion helioscope but replaces ALPs produced in the Sun with those produced in a target material. Since we rely on ALP-photon conversions, our proposal probes light (slim) ALPs that are otherwise inaccessible to laboratory-based experiments which rely on ALP decay, and complements astrophysical probes that are more model-dependent. As a first application, we reinterpret existing data from the NOMAD experiment in light of PASSAT, and constrain the parameter space for ALPs lighter than $$\sim 100~\mathrm{eV}$$100eV and ALP-photon coupling larger than $$\sim 10^{-4}~\mathrm{GeV}^{-1}$$10-4GeV-1. As benchmarks of feasible low-cost experiments improving over the NOMAD limits, we study the possibility of re-using the magnets of the CAST and the proposed BabyIAXO experiments and placing them at the proposed BDF facility at CERN, together with some new detectors. We find that these realizations of PASSAT allow for a direct probe of the parameter space for ALPs lighter than $$\sim 100~\mathrm{eV}$$100eV and ALP-photon coupling larger than $$\sim 4\times 10^{-6}~\mathrm{GeV}^{-1}$$4×10-6GeV-1, which are regions that have not been probed yet by experiments with laboratory-produced ALPs. In contrast to other proposals aiming at detecting single or two-photon only events in hadronic beam dump environments, that rely heavily on Monte Carlo simulations, the background in our proposal can be directly measured in-situ, its suppression optimized, and the irreducible background statistically subtracted. Sensitivity evaluations with other beams will be the subject of a future paper. The measurements suggested in this paper represent an additional physics case for the BDF at CERN beyond those already proposed.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3