Calorimetry with deep learning: particle simulation and reconstruction for collider physics

Author:

Belayneh Dawit,Carminati Federico,Farbin Amir,Hooberman Benjamin,Khattak Gulrukh,Liu Miaoyuan,Liu Junze,Olivito Dominick,Pacela Vitória Barin,Pierini Maurizio,Schwing Alexander,Spiropulu Maria,Vallecorsa Sofia,Vlimant Jean-Roch,Wei Wei,Zhang Matt

Abstract

AbstractUsing detailed simulations of calorimeter showers as training data, we investigate the use of deep learning algorithms for the simulation and reconstruction of single isolated particles produced in high-energy physics collisions. We train neural networks on single-particle shower data at the calorimeter-cell level, and show significant improvements for simulation and reconstruction when using these networks compared to methods which rely on currently-used state-of-the-art algorithms. We define two models: an end-to-end reconstruction network which performs simultaneous particle identification and energy regression of particles when given calorimeter shower data, and a generative network which can provide reasonable modeling of calorimeter showers for different particle types at specified angles and energies. We investigate the optimization of our models with hyperparameter scans. Furthermore, we demonstrate the applicability of the reconstruction model to shower inputs from other detector geometries, specifically ATLAS-like and CMS-like geometries. These networks can serve as fast and computationally light methods for particle shower simulation and reconstruction for current and future experiments at particle colliders.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep generative models for detector signature simulation: A taxonomic review;Reviews in Physics;2024-12

2. Application of a deep learning method for shower axis reconstruction in a 3D imaging calorimeter;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-09

3. Convolutional L2LFlows: generating accurate showers in highly granular calorimeters using convolutional normalizing flows;Journal of Instrumentation;2024-09-01

4. Anomaly detection with flow-based fast calorimeter simulators;Physical Review D;2024-08-29

5. The MadNIS reloaded;SciPost Physics;2024-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3