Temperature effects on light yield and pulse shape discrimination capability of siloxane based scintillators

Author:

Carturan S. M.ORCID,Pino F.,Fontana C. L.,Moretto S.,Zanazzi E.,Raggio R.,Raniero W.,Quaranta A.

Abstract

AbstractIn this work, we report the study of temperature effects on light yield of siloxane-based scintillators and on n/$$\gamma $$ γ discrimination capability, in terms of pulse shape discrimination (PSD). The solid scintillators are composed of phenyl containing polysiloxane (PMPS100), as a base polymer, loaded with moderate amounts (6 wt%) of 2,5-diphenyloxazole (PPO) as a primary dye and Lumogen Violet (LV) as waveshifter. The samples were heated in the range of 60–150 $$^\circ \hbox {C}$$ C and scintillation performance were tested both after annealing for 24 h and in real time during heating. Light yield of siloxane-based scintillators containing 6 wt% PPO heated at 100 $$^\circ \hbox {C}$$ C is very close to the room-temperature value, while heating at 120 $$^\circ \hbox {C}$$ C causes a decrease of light yield (LY) of 17%. In addition, the figure of merit (FoM) for n/$$\gamma $$ γ discrimination of the scintillator shows a sensible worsening of the discrimination performances in case of prolonged treatment at 120 $$^\circ \hbox {C}$$ C . Similar tests are made using the commercial plastic scintillator EJ-299 (currently named EJ-276), based on polyvinyltoluene (PVT). In this case, the light yield undergoes a much more rapid deterioration with annealing temperature, and at 70 $$^\circ \hbox {C}$$ C it is reduced to 60% of the original value. The discrimination capability of EJ-299 decreases upon heating at 70 $$^\circ \hbox {C}$$ C as well, with a 20% reduction of FoM; meanwhile for T > 70 $$^\circ \hbox {C}$$ C the mechanical and optical features are remarkably degraded. The mass loss of primary dye PPO from the siloxane scintillator as a function of treatment temperature and initial dye concentration has been evaluated and compared to the behaviour of EJ-299. This measurement allows to single out and characterize a series of processes occurring during heating, which are relevant to the whole performance of the system under study, such as sublimation at the interface, thermally induced photooxidation of components, diffusion of fluorophores from the polymer bulk to the surface. The variation in luminescence characteristics have been analyzed by excitation/fluorescence spectroscopy and time-resolved fluorescence spectroscopy, in order to correlate the annealing treatment with the primary dye loss by sublimation, formation of superficial aggregates and/or degradation of the scintillator components in the synthesized siloxane scintillator.

Funder

Università degli Studi di Padova

Istituto Nazionale di Fisica Nucleare

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3