Extended gravitational decoupling (GD) solution for charged compact star model

Author:

Maurya S. K.

Abstract

AbstractIn the present article, we have obtained a new solution for the charged compact star model through the gravitational decoupling (GD) by using a complete geometric deformation (CGD) approach (Ovalle, Phys Lett B 788:213, 2019). In this approach, the initial decoupled system is separated into two subsystems namely Einstein–Maxwell’s system and quasi-Einstein system. We solve Einstein–Maxwell’s system by taking well known Tolman–Kuchowicz spacetime geometry in the context of the perfect fluid matter distribution. On the other hand, the second system introduce the anisotropy inside the matter distribution which is solved by taking an EOS in $$\theta $$θ components. The boundary conditions have been derived to determine the constants parameter. To support the mathematical and physical analysis of the present GD solution, we have plotted all the graphs for the compact objects PSR J1614-2230, 4U1608-52 and Cen X-3 corresponding to the constant $$\alpha =0.001$$α=0.001, 0.0012 and 0.0014, respectively. Moreover, we also studied the equilibrium and stability of the solution. The present study shows that the GD technique is a very significant tool to generalize the solution in a more complex form or one matter distribution to another matter distribution.

Funder

The Research Council

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3