Abstract
AbstractThe next-to-next-to-leading order (NNLO) pQCD correction to the inclusive decays of the heavy quarkonium $$\eta _Q$$ηQ (Q being c or b) has been done in the literature within the framework of nonrelativistic QCD. One may observe that the NNLO decay width still has large conventional renormalization scale dependence due to its weaker pQCD convergence, e.g. about $$\left( ^{+4\%}_{-34\%}\right) $$-34%+4% for $$\eta _c$$ηc and $$\left( ^{+0.0}_{-9\%}\right) $$-9%+0.0 for $$\eta _b$$ηb, by varying the scale within the range of $$[m_Q, 4m_Q]$$[mQ,4mQ]. The principle of maximum conformality (PMC) provides a systematic way to fix the $$\alpha _s$$αs-running behavior of the process, which satisfies the requirements of renormalization group invariance and eliminates the conventional renormalization scheme and scale ambiguities. Using the PMC single-scale method, we show that the resultant PMC conformal series is renormalization scale independent, and the precision of the $$\eta _Q$$ηQ inclusive decay width can be greatly improved. Taking the relativistic correction $${\mathcal {O}}(\alpha _{s}v^2)$$O(αsv2) into consideration, the ratios of the $$\eta _{Q}$$ηQ decays to light hadrons or $$\gamma \gamma $$γγ are: $$R^\mathrm{NNLO}_{\eta _c}|_{\mathrm{PMC}}=(3.93^{+0.26}_{-0.24})\times 10^3$$RηcNNLO|PMC=(3.93-0.24+0.26)×103 and $$R^\mathrm{NNLO}_{\eta _b}|_{\mathrm{PMC}}=(22.85^{+0.90}_{-0.87})\times 10^3$$RηbNNLO|PMC=(22.85-0.87+0.90)×103, respectively. Here the errors are for $$\Delta \alpha _s(M_Z) = \pm 0.0011$$Δαs(MZ)=±0.0011. As a step forward, by applying the Pad$$\acute{e}$$e´ approximation approach (PAA) over the PMC conformal series, we obtain approximate NNNLO predictions for those two ratios, e.g. $$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}} =(5.66^{+0.65}_{-0.55})\times 10^3$$RηcNNNLO|PAA+PMC=(5.66-0.55+0.65)×103 and $$R^{\mathrm{NNNLO}}_{\eta _b}|_{\mathrm{PAA+PMC}}=(26.02^{+1.24}_{-1.17})\times 10^3$$RηbNNNLO|PAA+PMC=(26.02-1.17+1.24)×103. The $$R^{\mathrm{NNNLO}}_{\eta _c}|_{\mathrm{PAA+PMC}}$$RηcNNNLO|PAA+PMC ratio agrees with the latest PDG value $$R_{\eta _c}^\mathrm{{exp}}=(5.3_{-1.4}^{+2.4})\times 10^3$$Rηcexp=(5.3-1.4+2.4)×103, indicating the necessity of a strict calculation of NNNLO terms.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference57 articles.
1. M. Ablikim et al. [BESIII Collaboration], Evidence for $$\eta _c \rightarrow \gamma \gamma $$ and measurement of $$J/\psi \rightarrow 3\gamma $$, Phys. Rev. D 87, 032003 (2013)
2. M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98, 030001 (2018)
3. G.T. Bodwin, E. Braaten, G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev. D 51, 1125 (1995)
4. G.T. Bodwin, A. Petrelli, Order-$$v^4$$ corrections to $$S$$-wave quarkonium decay. Phys. Rev. D 66, 094011 (2002)
5. R. Barbieri, E. d’Emilio, G. Curci, E. Remiddi, Strong radiative corrections to annihilations of quarkonia in QCD. Nucl. Phys. B 154, 535 (1979)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献