$$^{222}$$Rn  emanation measurements for the XENON1T experiment

Author:

Aprile E., ,Aalbers J.,Agostini F.,Alfonsi M.,Althueser L.,Amaro F. D.,Antochi V. C.,Angelino E.,Angevaare J. R.,Arneodo F.,Barge D.,Baudis L.,Bauermeister B.,Bellagamba L.,Benabderrahmane M. L.,Berger T.,Breur P. A.,Brown A.,Brown E.,Bruenner S.,Bruno G.,Budnik R.,Capelli C.,Cardoso J. M. R.,Cichon D.,Cimmino B.,Clark M.,Coderre D.,Colijn A. P.,Conrad J.,Cussonneau J. P.,Decowski M. P.,Depoian A.,Di Gangi P.,Di Giovanni A.,Di Stefano R.,Diglio S.,Elykov A.,Eurin G.,Ferella A. D.,Fulgione W.,Gaemers P.,Gaior R.,Rosso A. Gallo,Galloway M.,Gao F.,Grandi L.,Garbini M.,Hasterok C.,Hils C.,Hiraide K.,Hoetzsch L.,Hogenbirk E.,Howlett J.,Iacovacci M.,Itow Y.,Joerg F.,Kato N.,Kazama S.,Kobayashi M.,Koltman G.,Kopec A.,Landsman H.,Lang R. F.,Levinson L.,Lin Q.,Lindemann S.,Lindner M.,Lombardi F.,Lopes J. A. M.,López Fune E.,Macolino C.,Mahlstedt J.,Manenti L.,Manfredini A.,Marignetti F.,Undagoitia T. Marrodán,Martens K.,Masbou J.,Masson D.,Mastroianni S.,Messina M.,Miuchi K.,Molinario A.,Morå K.,Moriyama S.,Mosbacher Y.,Murra M.,Naganoma J.,Ni K.,Oberlack U.,Odgers K.,Palacio J.,Pelssers B.,Peres R.,Pienaar J.,Pizzella V.,Plante G.,Qin J.,Qiu H.,García D. Ramírez,Reichard S.,Rocchetti A.,Rupp N.ORCID,Santos J. M. F. dos,Sartorelli G.,Šarčević N.,Scheibelhut M.,Schindler S.,Schreiner J.,Schulte D.,Schumann M.,Lavina L. Scotto,Selvi M.,Semeria F.,Shagin P.,Shockley E.,Silva M.,Simgen H.ORCID,Takeda A.,Therreau C.,Thers D.,Toschi F.,Trinchero G.,Tunnell C.,Vargas M.,Volta G.,Wack O.,Wang H.,Wei Y.,Weinheimer C.,Weiss M.,Wenz D.,Westermann J.,Wittweg C.,Wulf J.,Xu Z.,Yamashita M.,Ye J.,Zavattini G.,Zhang Y.,Zhu T.,Zopounidis J. P.

Abstract

AbstractThe selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $$^{222}$$ 222 Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $$^{222}$$ 222 Rn activity concentration of $$10\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ 10 μ Bq / kg in $$3.2\,\mathrm{t}$$ 3.2 t of xenon. The knowledge of the distribution of the $$^{222}$$ 222 Rn sources allowed us to selectively eliminate problematic components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $$^{222}$$ 222 Rn activity concentration in XENON1T. The final $$^{222}$$ 222 Rn activity concentration of $$(4.5\pm 0.1)\,\mathrm{\,}\upmu \mathrm{Bq}/\mathrm{kg}$$ ( 4.5 ± 0.1 ) μ Bq / kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.

Funder

Région des Pays de la Loire

Swiss National Science Foundation

Fundacao para a Ciencia e a Tecnologia

Max-Planck-Gesellschaft

Knut and Alice Wallenberg Foundation

Kavli Foundation

German Ministry for Education and Research

National Science Foundation

Istituto Nazionale di Fisica Nucleare

Deutsche Forschungsgemeinschaft

JSPS Kakenhi in Japan

European Unions Horizon 2020 research and innovation programme

Weizmann Institute of Science

Netherlands Organisation for Scientific Research

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference38 articles.

1. Planck Collaboration Planck 2018 results. VI. Cosmological parameters (2018). arXiv:1807.06209

2. E. Aprile et al. (XENON Collaboration), The XENON1T Dark Matter Experiment. Eur. Phys. J. C 77, 881 (2017)

3. E. Aprile et al. (XENON10 Collaboration), Design and Performance of the XENON10 Dark Matter Experiment. Astropart. Phys. 34, 679–698 (2011)

4. E. Aprile et al. (XENON100 Collaboration), The XENON100 Dark Matter Experiment. Astropart. Phys. 35, 573–590 (2012)

5. L.E. Strigari, Galactic searches for dark matter. Phys. Rep. 531, 1 (2013)

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3