Finite temperature energy–momentum tensor in compactified cosmic string spacetime

Author:

dos Santos W. Oliveira,de Mello E. R. Bezerra

Abstract

AbstractIn this paper we analyze the expectation value of the field squared and the energy–momentum tensor associated with a massive charged scalar quantum field with a nonzero chemical potential propagating in a high-dimensional compactified cosmic string spacetime in thermal equilibrium at finite temperature T. Moreover, we assume that the charged quantum field interacts with a very thin magnetic flux running along the core of the idealized cosmic string, and with a magnetic flux enclosed by the compact dimension. These observables are expressed as the vacuum expectation values and the finite temperature contributions coming from the particles and antiparticles excitations. Due to the compactification, the thermal corrections can be decomposed in a part induced by the cosmic string spacetime without compactification, plus a contribution induced by the compactification. This decompositions explicitly follows from the Abel–Plana formula used to proceed the summation over the discrete quantum number associated with the quasiperiodic condition imposed on the quantum field along the compact dimension. The expectations values of the field squared and the energy–momentum tensor are even periodic functions of the magnetic flux with period being the quantum flux, and also even functions of the chemical potential. Our main objectives in this paper concern in the investigation of the thermal corrections only. In this way we explicitly calculate the behavior of these observables in the limits of low and high temperature. We show that the temperature enhance the induced densities. In addition some graphs are also included in order to exhibit these behaviors.

Funder

Fundação de Apoio à Pesquisa do Estado da Paraíba

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3