ICARUS at the Fermilab Short-Baseline Neutrino program: initial operation

Author:

Abratenko P.,Aduszkiewicz A.,Akbar F.,Pons M. Artero,Asaadi J.,Aslin M.,Babicz M.,Badgett W. F.,Bagby L. F.,Baibussinov B.,Behera B.,Bellini V.,Beltramello O.,Benocci R.,Berger J.,Berkman S.,Bertolucci S.,Bertoni R.,Betancourt M.,Bettini M.,Biagi S.,Biery K.,Bitter O.,Bonesini M.,Boone T.,Bottino B.,Braggiotti A.,Brailsford D.,Bremer J.,Brice S. J.,Brio V.,Brizzolari C.,Brown J.,Budd H. S.,Calaon F.,Campani A.,Carber D.,Carneiro M.,Terrazas I. Caro,Carranza H.,Casazza D.,Castellani L.,Castro A.,Centro S.,Cerati G.,Chalifour M.,Chambouvet P.,Chatterjee A.,Cherdack D.,Cherubini S.,Chithirasreemadam N.,Cicerchia M.,Cicero V.,Coan T.,Cocco A. G.,Convery M. R.,Copello S.,Cristaldo E.,Dange A. A.,de Icaza Astiz I.,De Roeck A.,Di Domizio S.,Di Noto L.,Di Stefano C.,Di Ferdinando D.,Diwan M.,Dolan S.,Domine L.,Donati S.,Doubnik R.,Drielsma F.,Dyer J.,Dytman S.,Fabre C.,Fabris F.,Falcone A.,Farnese C.,Fava A.,Ferguson H.,Ferrari A.,Ferraro F.,Gallice N.,Garcia F. G.,Geynisman M.,Giarin M.,Gibin D.,Gigli S. G.,Gioiosa A.,Gu W.,Guerzoni M.,Guglielmi A.,Gurung G.,Hahn S.,Hardin K.,Hausner H.,Heggestuen A.,Hilgenberg C.,Hogan M.,Howard B.,Howell R.,Hrivnak J.,Iliescu M.,Ingratta G.,James C.,Jang W.,Jung M.,Jwa Y.-J.,Kashur L.,Ketchum W.,Kim J. S.,Koh D.-H.,Kose U.,Larkin J.,Laurenti G.,Lukhanin G.,Marchini S.,Marshall C. M.,Martynenko S.,Mauri N.,Mazzacane A.,McFarland K. S.,Méndez D. P.,Menegolli A.,Meng G.,Miranda O. G.,Mladenov D.,Mogan A.,Moggi N.,Montagna E.,Montanari C.,Montanari A.,Mooney M.,Moreno-Granados G.,Mueller J.,Naples D.,Nebot-Guinot M.,Nessi M.,Nichols T.,Nicoletto M.,Norris B.,Palestini S.,Pallavicini M.,Paolone V.,Papaleo R.,Pasqualini L.,Patrizii L.,Peghin R.,Petrillo G.,Petta C.,Pia V.,Pietropaolo F.,Poirot J.,Poppi F.,Pozzato M.,Prata M. C.,Prosser A.,Putnam G.,Qian X.,Rampazzo G.,Rappoldi A.,Raselli G. L.,Rechenmacher R.,Resnati F.,Ricci A. M.,Riccobene G.,Rice L.,Richards E.,Rigamonti A.,Rosenberg M.,Rossella M.,Rubbia C.,Sala P.,Sapienza P.,Savage G.,Scaramelli A.,Scarpelli A.,Schmitz D.,Schukraft A.,Sergiampietri F.,Sirri G.,Smedley J. S.,Soha A. K.,Spanu M.,Stanco L.,Stewart J.,Suarez N. B.,Sutera C.,Tanaka H. A.,Tenti M.,Terao K.,Terranova F.,Togo V.,Torretta D.,Torti M.,Tortorici F.,Tosi N.,Tsai Y.-T.,Tufanli S.,Turcato M.,Usher T.,Varanini F.,Ventura S.,Vercellati F.,Vicenzi M.,Vignoli C.,Viren B.,Warner D.,Williams Z.,Wilson R. J.,Wilson P.,Wolfs J.,Wongjirad T.,Wood A.,Worcester E.,Worcester M.,Wospakrik M.,Yu H.,Yu J.,Zani A.,Zatti P. G.,Zennamo J.,Zettlemoyer J. C.,Zhang C.,Zucchelli S.,Zuckerbrot M.

Abstract

AbstractThe ICARUS collaboration employed the 760-ton T600 detector in a successful 3-year physics run at the underground LNGS laboratory, performing a sensitive search for LSND-like anomalous $$\nu _e$$ ν e appearance in the CERN Neutrino to Gran Sasso beam, which contributed to the constraints on the allowed neutrino oscillation parameters to a narrow region around 1 eV$$^2$$ 2 . After a significant overhaul at CERN, the T600 detector has been installed at Fermilab. In 2020 the cryogenic commissioning began with detector cool down, liquid argon filling and recirculation. ICARUS then started its operations collecting the first neutrino events from the booster neutrino beam (BNB) and the Neutrinos at the Main Injector (NuMI) beam off-axis, which were used to test the ICARUS event selection, reconstruction and analysis algorithms. ICARUS successfully completed its commissioning phase in June 2022. The first goal of the ICARUS data taking will be a study to either confirm or refute the claim by Neutrino-4 short-baseline reactor experiment. ICARUS will also perform measurement of neutrino cross sections with the NuMI beam and several Beyond Standard Model searches. After the first year of operations, ICARUS will search for evidence of sterile neutrinos jointly with the Short-Baseline Near Detector, within the Short-Baseline Neutrino program. In this paper, the main activities carried out during the overhauling and installation phases are highlighted. Preliminary technical results from the ICARUS commissioning data with the BNB and NuMI beams are presented both in terms of performance of all ICARUS subsystems and of capability to select and reconstruct neutrino events.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference48 articles.

1. C. Rubbia, The liquid argon time projection chamber: a new concept for neutrino detectors. CERN-EP 77–08 (1977)

2. A.A. Aguilar-Arevalo et al. (LSND Collaboration), Evidence for neutrino oscillations from the observation of electron anti-neutrinos in a muon anti-neutrino beam. Phys. Rev. D 64, 112007 (2001)

3. A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Updated MiniBooNE neutrino oscillation results with increased data and new background studies. Phys. Rev. D 103, 052002 (2021)

4. M. Antonello et al. (ICARUS Collaboration), Search for anomalies in the $$\nu _e$$ appearance from a $$\nu _\mu $$ beam. Eur. Phys. J. C 73, 2599 (2013)

5. R. Acciarri et al. (SBND-MicroBooNE-ICARUS Collaborations), A proposal for a three detector short-baseline neutrino oscillation program in the Fermilab booster neutrino beam (2015). arXiv:1503.01520

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3