Author:
Malik Adnan,Shafaq Attiya,Koussour M.,Yousaf Z.
Abstract
AbstractThis paper investigate the impacts of local density perturbations on the stability of self-gravitating compact objects by utilizing cracking technique within the context of f(R, T) gravity, where R and T represent the Ricci scalar, and the trace of energy–momentum, respectively. To achieve this, we developed the hydrostatic equilibrium equation for spherically symmetric spacetime with anisotropic matter configuration and subsequently applied the Krori–Barua spacetime coefficient. Subsequently, the hydrostatic equilibrium equation of the configuration is perturbed by employing the local density perturbations to the system, while considering a barotropic equation of state. To ascertain the validity of the proposed technique, we applied it to several compact stars, including, Her X-1, SAX J1808.4-3658, 4U 1820-30, PSR J1614-2230, Vela X-1, Cen X-3, and RXJ1856-37 and found that all the considered stars exhibit cracking or overturning. This study conclusively highlights the significance of the cracking technique in providing valuable insights into the stability analysis of self-gravitating compact objects.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献