Abstract
AbstractBlack hole solutions in general relativity come with pathologies such as singularity and mass inflation instability, which are believed to be cured by a yet-to-be-found quantum theory of gravity. Without such consistent description, one may model theory-agnostic phenomenological black holes that bypass the aforesaid issues. These so-called regular black holes are extensively studied in the literature using parameterized modifications over the black hole solutions of general relativity. However, since there exist several ways to model such black holes, it is important to study the consistency and viability of these solutions from both theoretical and observational perspectives. In this work, we consider a recently proposed model of regularized stable rotating black holes having two extra parameters in addition to the mass and spin of a Kerr solution. We start by computing their quasi-normal modes under scalar perturbation and investigate the impact of those additional parameters on black hole stability. In the second part, we study shadows of the central compact objects in $$M87^*$$
M
87
∗
and $$Sgr\, A^*$$
S
g
r
A
∗
modelled by these regularized black holes and obtain stringent bounds on the parameter space requiring consistency with Event Horizon Telescope observations.
Funder
Prime Minister Research Fellowship
Science and Engineering Research Board
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献