Search for low mass dark matter in DarkSide-50: the bayesian network approach

Author:

Agnes P.,Albuquerque I. F. M.,Alexander T.,Alton A. K.,Ave M.,Back H. O.,Batignani G.,Biery K.,Bocci V.,Bonivento W. M.,Bottino B.,Bussino S.,Cadeddu M.,Cadoni M.,Calaprice F.,Caminata A.,Campos M. D.,Canci N.,Caravati M.,Cargioli N.,Cariello M.,Carlini M.,Cataudella V.,Cavalcante P.,Cavuoti S.,Chashin S.,Chepurnov A.,Cicalò C.,Covone G.,D’Angelo D.,Davini S.,De Candia A.,De Cecco S.,De Filippis G.,De Rosa G.,Derbin A. V.,Devoto A.,D’Incecco M.,Dionisi C.,Dordei F.,Downing M.,D’Urso D.,Fairbairn M.,Fiorillo G.,Franco D.,Gabriele F.,Galbiati C.,Ghiano C.,Giganti C.,Giovanetti G. K.,Goretti A. M.,Grilli di Cortona G.,Grobov A.,Gromov M.,Guan M.,Gulino M.,Hackett B. R.,Herner K.,Hessel T.,Hosseini B.,Hubaut F.,Hungerford E. V.,Ianni An.,Ippolito V.,Keeter K.,Kendziora C. L.,Kimura M.,Kochanek I.,Korablev D.,Korga G.,Kubankin A.,Kuss M.,La Commara M.,Lai M.,Li X.,Lissia M.,Longo G.,Lychagina O.,Machulin I. N.,Mapelli L. P.,Mari S. M.,Maricic J.,Messina A.,Milincic R.,Monroe J.,Morrocchi M.,Mougeot X.,Muratova V. N.,Musico P.,Nozdrina A. O.,Oleinik A.,Ortica F.,Pagani L.,Pallavicini M.,Pandola L.,Pantic E.,Paoloni E.,Pelczar K.,Pelliccia N.,Piacentini S.,Pocar A.,Poehlmann D. M.,Pordes S.,Poudel S. S.,Pralavorio P.,Price D. D.,Ragusa F.,Razeti M.,Razeto A.,Renshaw A. L.,Rescigno M.,Rode J.,Romani A.,Sablone D.,Samoylov O.,Sandford E.,Sands W.,Sanfilippo S.,Savarese C.,Schlitzer B.,Semenov D. A.,Shchagin A.,Sheshukov A.,Skorokhvatov M. D.,Smirnov O.,Sotnikov A.,Stracka S.,Suvorov Y.,Tartaglia R.,Testera G.,Tonazzo A.,Unzhakov E. V.,Vishneva A.,Vogelaar R. B.,Wada M.,Wang H.,Wang Y.,Westerdale S.,Wojcik M. M.,Xiao X.,Yang C.,Zuzel G.,

Abstract

AbstractWe present a novel approach for the search of dark matter in the DarkSide-50 experiment, relying on Bayesian Networks. This method incorporates the detector response model into the likelihood function, explicitly maintaining the connection with the quantity of interest. No assumptions about the linearity of the problem or the shape of the probability distribution functions are required, and there is no need to morph signal and background spectra as a function of nuisance parameters. By expressing the problem in terms of Bayesian Networks, we have developed an inference algorithm based on a Markov Chain Monte Carlo to calculate the posterior probability. A clever description of the detector response model in terms of parametric matrices allows us to study the impact of systematic variations of any parameter on the final results. Our approach not only provides the desired information on the parameter of interest, but also potential constraints on the response model. Our results are consistent with recent published analyses and further refine the parameters of the detector response model.

Funder

Polish Ministry for Education and Science

Sao Paulo Research Foundation

Science and Technology Facilities Council, United Kingdom

IRAP AstroCeNT funded by FNP from ERDF

UnivEarthS LabEx

Istituto Nazionale di Fisica Nucleare

Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”

Polish NCN

Department of Energy

IN2P3-COPIN consortium

National Science Foundation

Institut National de Physique Nucléaire et de Physique des Particules

European Union’s Horizon 2020

Ministry of Education and Science of the Russian Federation for higher education establishments

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference78 articles.

1. DarkSide Collaboration, P. Agnes et al., Low-mass dark matter search with the DarkSide-50 experiment. Phys. Rev. Lett. 121(8), 081307 (2018). arXiv:1802.06994

2. XENON Collaboration, E. Aprile et al., Search for light dark matter interactions enhanced by the Migdal effect or Bremsstrahlung in XENON1T. Phys. Rev. Lett. 123(24), 241803 (2019). arXiv:1907.12771

3. XENON Collaboration, E. Aprile et al., Light dark matter search with ionization signals in XENON1T. Phys. Rev. Lett. 123(25), 251801 (2019). arXiv:1907.11485

4. PandaX-4T Collaboration, Y. Meng et al., Dark matter search results from the PandaX-4T commissioning run. Phys. Rev. Lett. 127(26), 261802 (2021). arXiv:2107.13438

5. DarkSide-50 Collaboration, P. Agnes et al., Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. arXiv:2207.11966

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3