Investigation of $$(g-2)_{\mu }$$ anomaly in the $$\mu $$-specific 2HDM with vector like leptons and the phenomenological implications

Author:

Raju Md.,Mukherjee Abhi,Saha Jyoti Prasad

Abstract

AbstractThe anomalous magnetic moment of muons has been a long-standing problem in SM. The current deviation of experimental value of the $$(g-2)_{\mu }$$ ( g - 2 ) μ from the standard model prediction is exactly $$4.2\sigma $$ 4.2 σ . Two Higgs Doublet Models can accommodate this discrepancy but such type of model naturally generate flavor changing neutral current(FCNC). To prevent this it was postulated that 2HDM without FCNC required that all fermions of a given charge couple to the same Higgs boson but the rule breaks in Muon Specific Two Higgs Doublet Model where all fermions except muon couple to one Higgs doublet and muon with the other Higgs doublet. The muon specific 2HDM provides an explanation for muon anomaly for extremely large $$\tan \beta $$ tan β with a particular value of $$m_{12}^2$$ m 12 2 . As a result, the parameter space of $$m_{12}^2$$ m 12 2 drastically decreased for the muon anomaly solution. To evade the limitation of this model we have extended this model with a vector like lepton generation which could explain the muon anomaly at low $$\tan \beta $$ tan β value with a heavy pseudo scalar Higgs boson under the shadow of current experimental and theoretical constraints. Moreover, with the help of the cut based analysis and multivariate analysis methods, we have also attempted to shed some light on the potential experimental signature of vector lepton decay to the heavy Higgs boson in the LHC experiment. We have showed that a multivariate analysis can increase the vector like leptons signal significance even in the high VLL mass and low $$\tan \beta $$ tan β region than that of a cut based analysis.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3