Non-metric geometry as the origin of mass in gauge theories of scale invariance

Author:

Ghilencea D. M.

Abstract

AbstractWe discuss gauge theories of scale invariance beyond the Standard Model (SM) and Einstein gravity. A consequence of gauging this symmetry is that their underlying 4D geometry is non-metric ($$\nabla _\mu g_{\alpha \beta }\!\not =\!0$$ μ g α β 0 ). Examples of such theories are Weyl’s original quadratic gravity theory and its Palatini version. These theories have spontaneous breaking of the gauged scale symmetry to Einstein gravity. All mass scales have a geometric origin: the Planck scale ($$M_p$$ M p ), cosmological constant ($$\Lambda $$ Λ ) and the mass of the Weyl gauge boson ($$\omega _\mu $$ ω μ ) of scale symmetry are proportional to a scalar field vev that has an origin in the (geometric) $${\tilde{R}}^2$$ R ~ 2 term in the action. With $$\omega _\mu $$ ω μ of non-metric geometry origin, the SM Higgs field also has a similar origin, generated by Weyl boson fusion in the early Universe. This appears as a microscopic realisation of “matter creation from geometry” discussed in the thermodynamics of open systems applied to cosmology. Unlike in local scale invariant theories (with no $$\omega _\mu $$ ω μ present) with an underlying pseudo-Riemannian geometry, in our case: (1) there are no ghosts and no additional fields beyond the SM and underlying Weyl or Palatini geometry, (2) the cosmological constant is positive and is small because gravity is weak, (3) the Weyl or Palatini connection shares the Weyl (gauge) symmetry of the action, and: (4) there exists a non-trivial, conserved Weyl current of this symmetry. An intuitive picture of non-metricity and its relation to mass generation is also provided from a solid state physics perspective where it is common and is associated with point defects (metric anomalies) of the crystalline structure.

Funder

Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference73 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3