Abstract
AbstractWhile it is known that any spherical fluid distribution may only source the spherically symmetric Schwarzschild space-time, the inverse is not true. Thus, in this manuscript, we find exact axially symmetric and static fluid (interior) solutions to Einstein equations, which match smoothly on the boundary surface to the Schwarzschild (exterior) space-time, even though the fluid distribution is not endowed with spherical symmetry. The solutions are obtained by using the general approach outlined in Hernández-Pastora et al. (Class Quantum Gravity 33:235005, 2016), and satisfy the usual requirements imposed to any physically admissible interior solution. A discussion about the physical and geometric properties of the source is presented. The relativistic multipole moments (RMM) are explicitly calculated in terms of the physical variables, allowing to prove that spherical sources can only match to the Schwarzschild space-time. The complexity of the source is evaluated through the complexity factors. It is shown that there is only one independent complexity factor, as in the spherically symmetric case.
Funder
Ministerio de Ciencia e Innovación
Consejería de Educación, Junta de Castilla y León
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献