Holographic dark energy through Kaniadakis entropy in non flat universe

Author:

Kumar P. Suresh,Pandey Bramha Dutta,Sharma Umesh Kumar,Pankaj ORCID

Abstract

AbstractBy extending the standard holographic principle to a cosmological framework and combining the non-flat condition with the Kaniadakis entropy, we construct the non-flat Kaniadakis holographic dark energy (KHDE) model. The model employs Kaniadakis parameter K and a parameter c. Derivation of the differential equation for KHDE density parameter to describe the evolutionary behavior of the universe is obtained. Such a differential equation could explain both the open as well as closed universe models. The classification based on matter and dark energy (DE) dominated regimes show that the KHDE scenario may be used to specify the universe’s thermal history and that a quintom regime can be encountered. For both open and closed, we find the expressions for the deceleration parameter and the equation of state (EoS) parameter. Also, by varying the associated parameters, classical stability of the method is established. On considering the curvature to be positive, the universe favors the quintom behavior for substantially smaller values as opposed to the flat condition, when only quintessence is attained for such K values. Additionally, we see a similar behavior while considering the negative curvature for such K values. Therefore, adding a little bit of spatial geometry that isn’t flat to the KHDE enhances the phenomenology while maintaining K values at lower levels. To validate the model parameters, the most recent $$30\;H(z)$$ 30 H ( z ) dataset, in the redshift range $$0.07 \le z \le 1.965$$ 0.07 z 1.965 are utilized. In addition, the distance modulus from the current Union 2.1 data set of type SNIa are employed.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modified cosmology through Kaniadakis entropy;Modern Physics Letters A;2024-09-13

2. Emergence of cosmic space and horizon thermodynamics from Kaniadakis entropy;Classical and Quantum Gravity;2024-08-23

3. New Tsallis holographic dark energy with Granda–Oliveros as IR-cutoff;Canadian Journal of Physics;2024-07-01

4. Cosmological evolution of new Tsallis agegraphic dark energy with conformal time as IR-cutoff;International Journal of Geometric Methods in Modern Physics;2024-06-10

5. Relativistic Roots of κ-Entropy;Entropy;2024-05-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3