Abstract
AbstractWe investigate whether quasinormal modes (QNMs) can be used in the search for signatures of extra dimensions. To address a gap in the Beyond the Standard Model (BSM) literature, we focus here on higher dimensions characterised by negative Ricci curvature. As a first step, we consider a product space comprised of a four-dimensional Schwarzschild black hole space-time and a three-dimensional nilmanifold (twisted torus); we model the black hole perturbations as a scalar test field. We suggest that the extra-dimensional geometry can be stylised in the QNM effective potential as a squared mass-like term representing the Kaluza–Klein (KK) spectrum. We then compute the corresponding QNM spectrum using three different numerical methods, and determine a possible “detectability bound” beyond which KK masses cannot be detected using QNMs.
Funder
Campus France
Department of Science and Innovation, South Africa
École Normale Supérieure de Lyon
National Research Foundation of South Africa
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quasinormal Modes of the Bumblebee Black Holes with a Global Monopole;International Journal of Theoretical Physics;2024-08-15
2. Axion stars in MGD background;The European Physical Journal C;2023-06-26