Physical properties of a quintessence anisotropic stellar model in f(Q) gravity and the mass–radius relation

Author:

Bhar PiyaliORCID

Abstract

AbstractIn this article, we present a new family of solutions to the Einstein field equations of an uncharged spherically symmetric anisotropic matter distribution in the context of f(Q) gravity by choosing $$f(Q)=Q+aQ^2$$ f ( Q ) = Q + a Q 2 , a being the coupling constant. Along with the fundamental quintessence dark energy defined by the equation of state parameter $$-1<\omega _q<-\frac{1}{3}$$ - 1 < ω q < - 1 3 , we have generated the field equations in modified gravity. Using the linear relationship between radial pressure and energy density along with the Krori–Barua (KB) metric potential, we are able to solve the field equations. Next, we discuss the smooth matching between the exterior Schwarzschild spacetime and the interior spherically symmetric spacetime. We have presented a thorough physical analysis of several factors analytically and graphically to show the physical viability of our suggested model. For the compact star SAXJ 1808.4-3658, our entire graphical analysis was carried out in the context of our solutions for various values of the coupling constant connection to the f(Q) gravity. The influence of coupling constant “a” on different model parameters has been numerically determined and is presented in tabular form. We checked the radial and tangential sound speeds, the stability factor, the adiabatic index, etc. to determine whether our model was stable. It is evident from our analysis that the model is potentially stable when coupling constant $$a \in [0,\,5]$$ a [ 0 , 5 ] . The maximum allowable mass and radius from our present model have been obtained through the mass–radius ($$M-R$$ M - R ) plot for different values of a.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3