Global phase space analysis for a class of single scalar field bouncing solutions in general relativity

Author:

Agrawal A. S.ORCID,Chakraborty SaikatORCID,Mishra B.ORCID,Dutta JibiteshORCID,Khyllep WompherdeikiORCID

Abstract

AbstractWe carry out a compact phase space analysis of a non-canonical scalar field theory whose Lagrangian is of the form $$F(X)-V(\phi )$$ F ( X ) - V ( ϕ ) within general relativity. In particular, we focus on a kinetic term of the form $$F(X)=\beta X^m$$ F ( X ) = β X m ($$m\ne 1/2$$ m 1 / 2 ) with power-law potential $$V_0 \phi ^n$$ V 0 ϕ n and exponential potential $$V_0 e^{-\lambda \phi /M_{Pl}}$$ V 0 e - λ ϕ / M Pl of the scalar field. The Cuscuton case $$m=1/2$$ m = 1 / 2 where the scalar field is non-dynamical is left out of consideration. The main aim of this work is to investigate the genericity of nonsingular bounce in these models and to investigate the cosmic future of the bouncing cosmologies when they are generic. A global dynamical system formulation that is particularly suitable for investigating nonsingular bouncing cosmologies is used to carry out the analysis. We show that when $$F(X)=\beta X^m$$ F ( X ) = β X m ($$\beta <0$$ β < 0 ), nonsingular bounce is generic for a power law potential $$V(\phi ) = V_0 \phi ^n$$ V ( ϕ ) = V 0 ϕ n only within the parameter range $$\left\{ \frac{1}{2}<m<1,\,n<\frac{2\,m}{m-1}\right\} $$ 1 2 < m < 1 , n < 2 m m - 1 and for an exponential potential $$V(\phi ) = V_0 e^{-\lambda \phi /M_{Pl}}$$ V ( ϕ ) = V 0 e - λ ϕ / M Pl only within the parameter range $$\left\{ \frac{1}{2}<m\le 1\right\} $$ 1 2 < m 1 . Except in these cases, nonsingular bounce in these models is not generic due to the non-existence of global past or future attractors. Our analysis serves to show the importance of a global phase space analysis to address important questions about nonsingular bouncing solutions, an idea that may and must be adopted for such solutions even in other theories.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3