Analyzing quantum gravity spillover in the semiclassical regime

Author:

Sahota Harkirat SinghORCID,Lochan Kinjalk

Abstract

AbstractOne of the standard approaches of incorporating the quantum gravity (QG) effects into the semiclassical analysis is to adopt the notion of a quantum-corrected spacetime arising from the QG model. This procedure assumes that the expectation value of the metric variable effectively captures the relevant QG subtleties in the semiclassical regime. We investigate the viability of this effective geometry approach for the case of dust dominated and a dark energy dominated universe. We write the phase space expressions for the geometric observables and construct corresponding Hermitian operators. A general class of operator ordering of these observables is considered, and their expectation values are calculated for a unitarily evolving wave packet. In the case of dust dominated universe, the expectation value of the Hubble parameter matches the “semiclassical” expression, the expression computed from the scale factor expectation value. In the case of the Ricci scalar, the relative difference between the semiclassical expression and quantum expectation is maximum at singularity and decays for late time. For a cosmological constant driven universe, the difference between the semiclassical expressions and the expectation value is most pronounced far away from the bounce point, hinting at the persistent quantum effect at the late time. The parameter related to the shape of the distribution appears as a control parameter in these models. In the limit of a sharply peaked distribution, the expectation value of the observables matches with their semiclassical counterpart, and the usage of effective geometry approach is justified.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3