Constraining spacetime metrics within and outside general relativity through the Galactic Center black hole (SgrA*) shadow

Author:

Kalita Sanjeev,Bhattacharjee Pranjali

Abstract

AbstractThe Galactic Center (GC) black hole (Sgr A*) shadow detected by the Event Horizon Telescope (EHT) is a new probe for testing spacetime metric in strong field regime. In this work, the Schwarzschild de-Sitter (SdS), Kerr (K), Kerr de-Sitter (KdS), Reissner Nordstrom with tidal charge (RN), scalaron and the PPN metric have been used to put bounds on their parameters. Based on EHT’s angular size of the Sgr A* black hole shadow, we obtain constraints for the cosmological constant, $$\lambda $$ λ from the SdS and KdS metrics and find that the bounds on the cosmological constant are well above the cosmological bound. For the RN metric, the bounds obtained on the tidal charge q are stringent as compared to those reported for M87* shadow. In case of scalaron metric of f(R) modified gravity we have been able to narrow down the range of scalaron mass as compared to previous reports coming from the study of the pericenter shift of the compact stellar orbits. We find no significant deviation of the gravitational constant, G as expected from the modified gravity. For the PPN metric it has been found that it is not possible to constrain higher order correction in PPN metric for $$\upbeta $$ β , $$\upgamma $$ γ given by present measurements of stellar orbits near Sgr A*. However, for solar system bounds ($$\upbeta - \upgamma = 0$$ β - γ = 0 ), there appears a wide range of the third order parameter $$\upzeta $$ ζ . Inferences for gravity on the basis of constrained parameters are presented.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3