Observable gravitational waves from hyperkination in Palatini gravity and beyond

Author:

Sánchez López SamuelORCID,Dimopoulos KonstantinosORCID,Karam AlexandrosORCID,Tomberg EemeliORCID

Abstract

AbstractWe consider cosmology with an inflaton scalar field with an additional quartic kinetic term. Such a theory can be motivated by Palatini $$R+R^2$$ R + R 2 modified gravity. Assuming a runaway inflaton potential, we take the Universe to become dominated by the kinetic energy density of the scalar field after inflation. Initially, the leading kinetic term is quartic and we call the corresponding period hyperkination. Subsequently, the usual quadratic kinetic term takes over and we have regular kination, until reheating. We study, both analytically and numerically, the spectrum of primordial gravitational waves generated during inflation and re-entering the horizon during the subsequent eras. We demonstrate that the spectrum is flat for modes re-entering during radiation domination and hyperkination and linear in frequency for modes re-entering during kination: kinetic domination boosts the spectrum, but hyperkination truncates its peak. As a result, the effects of the kinetic period can be extended to observable frequencies without generating excessive gravitational waves, which could otherwise destabilise the process of Big Bang Nucleosynthesis. We show that there is ample parameter space for the primordial gravitational waves to be observable in the near future. If observed, the amplitude and ‘knee’ of the spectrum will provide valuable insights into the background theory.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inflation and reheating in quadratic metric-affine gravity with derivative couplings;Journal of Cosmology and Astroparticle Physics;2024-06-01

2. Higgs Inflation in Unimodular Gravity;Progress of Theoretical and Experimental Physics;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3