Author:
Goodsell Mark D.,Joury Ari
Abstract
AbstractActive learning (AL) has interesting features for parameter scans of new models. We show on a variety of models that AL scans bring large efficiency gains to the traditionally tedious work of finding boundaries for BSM models. In the MSSM, this approach produces more accurate bounds. In light of our prior publication, we further refine the exploration of the parameter space of the SMSQQ model, and update the maximum mass of a dark matter singlet to 48.4 TeV. Finally we show that this technique is especially useful in more complex models like the MDGSSM.
Funder
Agence Nationale de Recherche
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献