Gravitational lensing by using the 0th order of affine perturbation series of the deflection angle of a ray near a photon sphere

Author:

Tsukamoto Naoki

Abstract

AbstractThe 0th order of affine perturbation series of the deflection angle of a ray near a photon sphere is more accurate than a deflection angle in a strong deflection limit, which is used often, because the later has hidden error terms. We investigate gravitational lensing by using 0th order affine perturbation series of the deflection angle in a general asymptotically-flat, static, and spherical symmetric spacetime with the photon sphere. We apply our formula to Schwarzschild black hole, Reissner–Nordström black hole, and Ellis–Bronnikov wormhole spacetimes as examples. By comparing observables by using the deflection angles, we show that we can ignore the effect of the hidden error terms in the the deflection angle in the strong deflection limit on the observables in a usual lens configuration with the photon sphere since the hidden error terms are tiny. On the other hand, in a retro lensing configuration, the deflection angle in the strong-deflection-limit analysis have error of several percent and the 0th order of affine perturbation series of the deflection angle has almost half of the error. Thus, in the retro lensing configuration, we should use the 0th order of affine perturbation series of the deflection angle rather than the deflection angle in the strong-deflection-limit analysis. The 0th order of affine perturbation series of the deflection angle can give a brighter magnification by a dozen percent than the one by using the deflection angle in the strong-deflection-limit analysis.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3