Abstract
AbstractAn evaluation method supported by robust statistical analysis was applied to historical measurements of $$^{39}$$
39
Ar half-life. The method, based on the most frequent value (MFV) approach combined with bootstrap analysis, provides a more robust way to estimate $$^{39}$$
39
Ar half-life, and results in $$T_{1/2}($$
T
1
/
2
(
MFV$$) = 268.2^{+3.1}_{-2.9}$$
)
=
268
.
2
-
2.9
+
3.1
years with uncertainty corresponding to the 68% confidence level. The uncertainty is a factor of 3 smaller than that of the most precise re-calculated $$^{39}$$
39
Ar half-life measurements by Stoenner et al. and a factor of 2.7 smaller than that of the adopted half-life value in nuclear data sheets. Recently, the specific activity of the beta decay of $$^{39}$$
39
Ar in atmospheric argon was measured in several underground facilities. Applying the MFV method to a specific activity of $$^{39}$$
39
Ar from underground measurements results in $$ SA_{{^{39}\text {Ar}}/\text {Ar}}(\text {MFV}) = 0.966^{+0.010}_{-0.018} \, \, \text {Bq/kg}_{\text {atmAr}}$$
S
A
39
Ar
/
Ar
(
MFV
)
=
0
.
966
-
0.018
+
0.010
Bq/kg
atmAr
with uncertainty corresponding to the 68% confidence level. In this paper the method to determine the half-life of $$^{39}$$
39
Ar using the specific activity of $$^{39}$$
39
Ar in atmospheric argon is also discussed.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献