Neutrino tomography of the Earth with ORCA detector

Author:

Capozzi F.,Petcov S. T.

Abstract

AbstractUsing PREM as a reference model for the Earth density distribution we investigate the sensitivity of ORCA detector to deviations of the Earth (i) outer core (OC) density, (ii) inner core (IC) density, (iii) total core density, and (iv) mantle density, from their respective PREM densities. The analysis is performed by studying the effects of the Earth matter on the oscillations of atmospheric $$\nu _{\mu }$$ ν μ , $$\nu _e$$ ν e , $${\bar{\nu }}_\mu $$ ν ¯ μ and $${\bar{\nu }}_e$$ ν ¯ e . We present results which illustrate the dependence of the ORCA sensitivity to the OC, IC, core and mantle densities on the type of systematic uncertainties used in the analysis, on the value of the atmospheric neutrino mixing angle $$\theta _{23}$$ θ 23 , on whether the Earth mass constraint is implemented or not, and on the way it is implemented, and on the type – with normal ordering (NO) or inverted ordering (IO) – of the light neutrino mass spectrum. We show, in particular, that in the “most favorable” NO case of implemented Earth mass constraint, “minimal” systematic errors and $$\sin ^2\theta _{23}=0.58$$ sin 2 θ 23 = 0.58 , ORCA can determine, e.g., the OC (mantle) density at $$3\sigma $$ 3 σ C.L. after 10 years of operation with an uncertainty of (− 18%)/+ 15% (of (− 6%)/+ 8%). In the “most disfavorable” NO case of “conservative” systematic errors and $$\sin ^2\theta _{23}=0.42$$ sin 2 θ 23 = 0.42 , the uncertainty on OC (mantle) density reads (− 43%)/+ 39% ((− 17%/+ 20%), while for for $$\sin ^2\theta _{23} = 0.50$$ sin 2 θ 23 = 0.50 and 0.58 it is noticeably smaller: (− 37)%/+ 30% and (− 30%)/+ 24% ((− 13%)/+ 16% and (− 11%/+ 14%)). We find also that the sensitivity of ORCA to the OC, core and mantle densities is significantly worse for IO neutrino mass spectrum.

Funder

U.S. Department of Energy

European Union’s Horizon 2020 research and innovation programme

World Premier International Research Center Initiative (WPI Initiative, MEXT), Japan

Italian INFN program on Theoretical Astroparticle Physics

GVA Grant, Spain

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3