Dark energy and accelerating cosmological evolution from osculating Barthel–Kropina geometry

Author:

Hama Rattanasak,Harko Tiberiu,Sabau Sorin V.

Abstract

AbstractFinsler geometry is an important extension of Riemann geometry, in which each point of the spacetime manifold is associated with an arbitrary internal variable. Two interesting Finsler geometries with many physical applications are the Randers and Kropina type geometries. A subclass of Finsler geometries is represented by the osculating Finsler spaces, in which the internal variable is a function of the base manifold coordinates only. In an osculating Finsler geometry, we introduce the Barthel connection, with the remarkable property that it is the Levi–Civita connection of a Riemannian metric. In the present work we consider the gravitational and cosmological implications of a Barthel–Kropina type geometry. We assume that in this geometry the Ricci type curvatures are related to the matter energy–momentum tensor by the standard Einstein equations. The generalized Friedmann equations in the Barthel–Kropina geometry are obtained by considering that the background Riemannian metric is of Friedmann–Lemaitre–Robertson–Walker type. The matter energy balance equation is also derived. The cosmological properties of the model are investigated in detail, and it is shown that the model admits a de Sitter type solution and that an effective dark energy component can also be generated. Several cosmological solutions are also obtained by numerically integrating the generalized Friedmann equations. A comparison of two specific classes of models with the observational data and with the standard $$\Lambda $$ Λ CDM model is also performed, and it is found that the Barthel–Kropina type models give a satisfactory description of the observations.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3