Author:
Dreyer Frédéric A.,Grabarczyk Radosław,Monni Pier Francesco
Abstract
AbstractA significant challenge in the tagging of boosted objects via machine-learning technology is the prohibitive computational cost associated with training sophisticated models. Nevertheless, the universality of QCD suggests that a large amount of the information learnt in the training is common to different physical signals and experimental setups. In this article, we explore the use of transfer learning techniques to develop fast and data-efficient jet taggers that leverage such universality. We consider the graph neural networks and , and introduce two prescriptions to transfer an existing tagger into a new signal based either on fine-tuning all the weights of a model or alternatively on freezing a fraction of them. In the case of W-boson and top-quark tagging, we find that one can obtain reliable taggers using an order of magnitude less data with a corresponding speed-up of the training process. Moreover, while keeping the size of the training data set fixed, we observe a speed-up of the training by up to a factor of three. This offers a promising avenue to facilitate the use of such tools in collider physics experiments.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献