Abstract
AbstractWe study optical metrics via null geodesics as a central force system, deduce the related Binet equation and apply the analysis to certain solutions of Einstein’s equations with and without spherical symmetry. A general formula for the deflection angle in the weak lensing regime for the Schwarzschild-Tangherlini (ST) metric is derived. In addition, we obtain a new weak lensing formula for the deflection angle on the equatorial plane of a Kerr black hole (BH). We also explore the bending of light by considering the gravitational objects described by the Tomimatsu–Sato (TS) metric.
Funder
Khalifa University of Science, Technology and Research
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference71 articles.
1. G.W. Gibbons, C.A.R. Herdeiro, C.M. Warnick, M.C. Werner, Stationary metrics and optical Zermelo–Randers–Finsler geometry. Phys. Rev. D 4, 79 (2009)
2. S. Casey, Kastor–Traschen black holes, null geodesics and conformal circles. Class. Quantum Gravity 29, 135006 (2012)
3. P.L. Maupertuis, ccord de différentes loix de la nature qui avoient jusqu’ici paru incompatibles, Paris, Imprimérie Royale 1748 in ”Histoire de l’Académie royale des sciences. Année M.DCCXLIV”, p. 417–426. Mémoire daté du 15 avril 1744
4. G.W. Gibbons, M. Vyska, The applications of Weierstrass elliptic functions to Schwarzschild null geodesics. Class. Quantum Gravity 29, 065016 (2012)
5. A. Cieślik, P. Mach, Revisiting timelike geodesics in the Schwarzschild spacetime: general expressions in terms of Weierstrass elliptic functions (2022). arXiv:2203.12401
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献