Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem

Author:

Moreno-Pulido Cristian,Solà Peracaula JoanORCID

Abstract

AbstractThe renormalization of the vacuum energy in quantum field theory (QFT) is usually plagued with theoretical conundrums related not only with the renormalization procedure itself, but also with the fact that the final result leads usually to very large (finite) contributions incompatible with the measured value of $$\Lambda $$ Λ in cosmology. As a consequence, one is bound to extreme fine-tuning of the parameters and so to sheer unnaturalness of the result and of the entire approach. We may however get over this adversity using a different perspective. Herein, we compute the zero-point energy (ZPE) for a nonminimally coupled (massive) scalar field in FLRW spacetime using the off-shell adiabatic renormalization technique employed in previous work. The on-shell renormalized result first appears at sixth adiabatic order, so the calculation is rather cumbersome. The general off-shell result yields a smooth function $$\rho _{\mathrm{vac}}(H)$$ ρ vac ( H ) made out of powers of the Hubble rate and/or of its time derivatives involving different (even) adiabatic orders $$\sim H^N$$ H N ($$N=0, 2,4,6,\ldots )$$ N = 0 , 2 , 4 , 6 , ) , i.e. it leads, remarkably enough, to the running vacuum model (RVM) structure. We have verified the same result from the effective action formalism and used it to find the $$\beta $$ β -function of the running quantum vacuum. No undesired contributions $$\sim m^4$$ m 4 from particle masses appear and hence no fine-tuning of the parameters is needed in $$\rho _{\mathrm{vac}}(H)$$ ρ vac ( H ) . Furthermore, we find that the higher power $$\sim H^6$$ H 6 could naturally drive RVM-inflation in the early universe. Our calculation also elucidates in detail the equation of state of the quantum vacuum: it proves to be not exactly $$-1$$ - 1 and is moderately dynamical. The form of $$\rho _{\mathrm{vac}}(H)$$ ρ vac ( H ) at low energies is also characteristic of the RVM and consists of an additive term (the so-called ‘cosmological constant’) together with a small dynamical component $$\sim \nu H^2$$ ν H 2 ($$|\nu |\ll 1$$ | ν | 1 ). Finally, we predict a slow ($$\sim \ln H$$ ln H ) running of Newton’s gravitational coupling G(H). The physical outcome of our semiclassical QFT calculation is revealing: today’s cosmic vacuum and the gravitational strength should be both mildly dynamical.

Funder

Ministerio de Economía y Competitividad

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference201 articles.

1. A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsber. Königl. Preuss. Akad. Wiss. phys.-math. Klasse VI (1917), p. 142

2. A.S. Eddington, On the instability of Einstein’s spherical world. MNRAS 90, 668 (1930)

3. A. Einstein, Zum kosmologischen Problem der allgemeinen Relativitätstheorie, Sitzungsber. Königl. Preuss. Akad. Wiss., phys.-math. Klasse, XII (1931), p. 235

4. G. Lemaître, Evolution of the expanding universe. Proc. Natl. Acad. Sci. 20, 12 (1934)

5. G. Lemaître, Evolution in the expanding universe. Nature 133, 654 (1934)

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3