A method to remove lower order contributions in multi-particle femtoscopic correlation functions

Author:

Del Grande RaffaeleORCID,Šerkšnytė Laura,Fabbietti Laura,Mantovani Sarti Valentina,Mihaylov Dimitar

Abstract

AbstractIn recent years the femtoscopy technique has been used by the ALICE Collaboration in small colliding systems at the LHC to investigate the strong-interaction of hadron pairs in the low-energy regime. The extension of this technique to the study of many-body correlations aims to deliver in the next years the first experimental measurements of the genuine many-hadron interactions, provided that the contributions due to the lower order terms are properly accounted for. In this paper we present a method that allows to determine the residual lower order contributions to the three-body correlation functions, based on the cumulant decomposition approach and on kinematic transformations. A procedure to simulate genuine three-body correlations in three-baryon correlation functions is also developed. A qualitative study of the produced correlation signal is performed by varying the strength of the adopted three-body interaction model and comparisons with the expectations for the lower order contributions to the correlation function are shown. The method can be also applied to evaluate the combinatorial background in the two-body correlation functions, providing an improved statistical accuracy with respect to the standard techniques. The example of the contribution by the pK$$^+$$ + K$$^-$$ - channel to the recently measured p$$\upphi $$ ϕ correlation is discussed.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3