Author:
Chen Lili,Ren Yu-Wan,Wang Li-Ting,Chang Qin
Abstract
AbstractIn this paper, we calculate the vector, axial-vector and tensor form factors of $$P\rightarrow T$$
P
→
T
transition within the standard light-front (SLF) and covariant light-front (CLF) quark models (QMs). The self-consistency and Lorentz covariance of CLF QM with two types of correspondence schemes are investigated. The zero-mode effects and the spurious $$\omega $$
ω
-dependent contributions to the form factors of $$P\rightarrow T$$
P
→
T
transition are analyzed. Employing a self-consistent CLF QM, we present our numerical predictions for the vector, axial-vector and tensor form factors of $$c\rightarrow (q,s)$$
c
→
(
q
,
s
)
($$q=u,d$$
q
=
u
,
d
) induced $$D \rightarrow (a_2,K^*_2)$$
D
→
(
a
2
,
K
2
∗
)
, $$D_s \rightarrow (K^*_2,f'_{2})$$
D
s
→
(
K
2
∗
,
f
2
′
)
, $$\eta _c(1S) \rightarrow (D^*_2,D^*_{s2})$$
η
c
(
1
S
)
→
(
D
2
∗
,
D
s
2
∗
)
, $$ B_c \rightarrow (B^*_2,B^*_{s2})$$
B
c
→
(
B
2
∗
,
B
s
2
∗
)
transitions and $$b\rightarrow (q,s,c)$$
b
→
(
q
,
s
,
c
)
induced $$B \rightarrow (a_2,K^*_2,D^*_2)$$
B
→
(
a
2
,
K
2
∗
,
D
2
∗
)
, $$B_s \rightarrow (K^*_2,f'_2,D^*_{s2})$$
B
s
→
(
K
2
∗
,
f
2
′
,
D
s
2
∗
)
, $$B_c \rightarrow (D^*_2,D^*_{s2},\chi _{c2}(1P))$$
B
c
→
(
D
2
∗
,
D
s
2
∗
,
χ
c
2
(
1
P
)
)
, $$\eta _b(1S) \rightarrow (B^*_2,B^*_{s2})$$
η
b
(
1
S
)
→
(
B
2
∗
,
B
s
2
∗
)
transitions. Finally, in order to test the obtained form factors, the semileptonic $$B\rightarrow {\bar{D}}_2^*(2460)\ell ^+\nu _\ell $$
B
→
D
¯
2
∗
(
2460
)
ℓ
+
ν
ℓ
($$\ell =e,\mu $$
ℓ
=
e
,
μ
) and $${\bar{D}}_2^*(2460)\tau ^+\nu _{\tau }$$
D
¯
2
∗
(
2460
)
τ
+
ν
τ
decays are studied. It is expected that our results for the form factors of $$P\rightarrow T$$
P
→
T
transition can be applied further to the relevant phenomenological studies of meson decays.
Funder
Excellent Youth Foundation of Henan Province
National Natural Science Foundation of China
Youth Talent Support Program of Henan Province
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference68 articles.
1. P. A. Zyla et al. [Particle Data Group], PTEP 2020(8), 083C01 (2020)
2. Y. S. Amhis et al. [HFLAV], Eur. Phys. J. C 81(3), 226 (2021)
3. H.Y. Cheng, K.C. Yang, Phys. Rev. D 83, 034001 (2011)
4. Z. T. Zou, L. Yang, Y. Li, X. Liu, Eur. Phys. J. C 81(1), 91 (2021)
5. Q. X. Li, L. Yang, Z. T. Zou, Y. Li, X. Liu, Eur. Phys. J. C 79(11), 960 (2019)