The Riemann hypothesis and tachyonic off-shell string scattering amplitudes

Author:

Perelman Carlos Castro

Abstract

AbstractThe study of the $$\mathbf{4}$$ 4 -tachyon off-shell string scattering amplitude $$ A_4 (s, t, u) $$ A 4 ( s , t , u ) , based on Witten’s open string field theory, reveals the existence of poles in the s-channel and associated to a continuum of complex “spins” J. The latter J belong to the Regge trajectories in the tu channels which are defined by $$ - J (t) = - 1 - { 1\over 2 } t = \beta (t)= { 1\over 2 } + i \lambda $$ - J ( t ) = - 1 - 1 2 t = β ( t ) = 1 2 + i λ ; $$ - J (u) = - 1 - { 1\over 2 } u = \gamma (u) = { 1\over 2 } - i \lambda $$ - J ( u ) = - 1 - 1 2 u = γ ( u ) = 1 2 - i λ , with $$ \lambda = real$$ λ = r e a l . These values of $$ \beta ( t ), \gamma (u) $$ β ( t ) , γ ( u ) given by $${ 1\over 2 } \pm i \lambda $$ 1 2 ± i λ , respectively, coincide precisely with the location of the critical line of nontrivial Riemann zeta zeros $$ \zeta (z_n = { 1\over 2 } \pm i \lambda _n) = 0$$ ζ ( z n = 1 2 ± i λ n ) = 0 . It is argued that despite assigning angular momentum (spin) values J to the off-shell mass values of the external off-shell tachyons along their Regge trajectories is not physically meaningful, their net zero-spin value $$ J ( k_1 ) + J (k_2) = J ( k_3 ) + J ( k_4 ) = 0$$ J ( k 1 ) + J ( k 2 ) = J ( k 3 ) + J ( k 4 ) = 0 is physically meaningful because the on-shell tachyon exchanged in the s-channel has a physically well defined zero-spin. We proceed to prove that if there were nontrivial zeta zeros (violating the Riemann Hypothesis) outside the critical line $$ Real~ z = 1/2 $$ R e a l z = 1 / 2 (but inside the critical strip) these putative zeros $$ don't$$ d o n t correspond to any poles of the $$\mathbf{4}$$ 4 -tachyon off-shell string scattering amplitude $$ A_4 (s, t, u) $$ A 4 ( s , t , u ) . We finalize with some concluding remarks on the zeros of sinh(z) given by $$ z = 0 + i 2 \pi n$$ z = 0 + i 2 π n , continuous spins, non-commutative geometry and other relevant topics.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference46 articles.

1. B. Riemann, On the number of prime numbers less than a given quantity. Monatsberichte der Berliner Akademie, November, 1859. Translated by D. R. Wilkins (1998)

2. A.A. Karatsuba, S.M. Voronin, The Riemann zeta function. Translated from the Russian by Neal Koblitz. Walter de Gruyter Pub., Berlin, pp. 8–10 in particular (1992)

3. S.J. Patterson, An introduction to the theory of the Riemann zeta function (Univ. Press, Cambridge, 1988)

4. H.M. Edwards, Riemann’s zeta function (Dover Pub, New York, 2001)

5. E.C. Titchmarsh, The theory of the Riemann zeta-function (Clarendon Press, Oxford, 1986)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measure for Chaotic Scattering Amplitudes;Physical Review Letters;2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3