Author:
Carrazza Stefano,Cruz-Martinez Juan,Stegeman Roy
Abstract
AbstractSince the first determination of a structure function many decades ago, all methodologies used to determine structure functions or parton distribution functions (PDFs) have employed a common prefactor as part of the parametrization. The NNPDF collaboration pioneered the use of neural networks to overcome the inherent bias of constraining the space of solution with a fixed functional form while still keeping the same common prefactor as a preprocessing. Over the years various, increasingly sophisticated, techniques have been introduced to counter the effect of the prefactor on the PDF determination. In this paper we present a methodology to perform a data-based scaling of the Bjorken x input parameter which facilitates the removal the prefactor, thereby significantly simplifying the methodology, without a loss of efficiency and finding good agreement with previous results.
Funder
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献