BHLS$$_2$$ upgrade: $$\tau $$ spectra, muon HVP and the [$$\pi ^0,~\eta ,~{\eta ^\prime }$$] system

Author:

Benayoun M.,DelBuono L.,Jegerlehner F.

Abstract

AbstractThe generic hidden local symmetry (HLS) model has recently given rise to its $$\hbox {BHLS}_2$$ BHLS 2 variant, defined by introducing symmetry breaking mostly in the vector meson sector; the central mechanism is a modification of the covariant derivative at the root of the HLS approach. However, the description of the $$\tau $$ τ dipion spectra, especially the Belle one, is not fully satisfactory, whereas the simultaneous dealing with its annihilation sector ($$e^+ e^- \rightarrow \pi ^+ \pi ^-/\pi ^+ \pi ^-\pi ^0/ \pi ^0 \gamma /\eta \gamma /K^+ K^-/K_L K_S$$ e + e - π + π - / π + π - π 0 / π 0 γ / η γ / K + K - / K L K S ) is optimum. We show that this issue is solved by means of an additional breaking term which also allows us to consistently include the mixing properties of the $$[\pi ^0,\eta ,{\eta ^\prime }]$$ [ π 0 , η , η ] system within this extended $$\hbox {BHLS}_2$$ BHLS 2 ($$\hbox {EBHLS}_2$$ EBHLS 2 ) scope. This mechanism, an extension of the usual ’t Hooft determinant term, only affects the kinetic energy part of the $$\hbox {BHLS}_2$$ BHLS 2 Lagrangian. One thus obtains a fair account for the $$\tau $$ τ dipion spectra which complements the fair account of the annihilation channels already reached. The Belle dipion spectrum is found to provide evidence in favor of a violation of the conserved vector current (CVC) in the $$\tau $$ τ lepton decay; this evidence is enforced by imposing the conditions $$<0|J_\mu ^q |[q^\prime \overline{q^\prime }](p)>=ip_\mu f_q \delta _{q q^\prime }, \{ [q {\overline{q}}], q=u,d,s\}$$ < 0 | J μ q | [ q q ¯ ] ( p ) > = i p μ f q δ q q , { [ q q ¯ ] , q = u , d , s } on $$\hbox {EBHLS}_2$$ EBHLS 2 axial current matrix elements. $$\hbox {EBHLS}_2$$ EBHLS 2 is found to recover the usual (completed) formulae for the [$$\pi ^0,~\eta ,~{\eta ^\prime }$$ π 0 , η , η ] mixing parameters, and the global fits return mixing parameter values in agreement with expectations and better uncertainties. Updating the muon hadronic vacuum polarization (HVP), one also argues that the strong tension between the KLOE and BaBar pion form factors imposes to provide two solutions, namely $$a_\mu ^{HVP-LO}(\mathrm{KLOE})=687.48 \pm 2.93$$ a μ H V P - L O ( KLOE ) = 687.48 ± 2.93 and $$a_\mu ^{HVP-LO}(\mathrm{BaBar})=692.53 \pm 2.95$$ a μ H V P - L O ( BaBar ) = 692.53 ± 2.95 , in units of $$10^{-10}$$ 10 - 10 , rather than some combination of these. Taking into account common systematics, their differences from the experimental BNL-FNAL average value exhibit significance $$> 5.4\sigma $$ > 5.4 σ (KLOE) and $$> 4.1\sigma $$ > 4.1 σ (BaBar), with fit probabilities favoring the former.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference128 articles.

1. Muon G-2, G.W. Bennett et al.,Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

2. T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 887, 1 (2020). arXiv:2006.04822

3. S. Borsanyi et al.,Leading hadronic contribution to the muon magnetic moment from lattice QCD (2020). arXiv:2002.12347

4. B. Abi et al.,Measurement of the positive muon anomalous magnetic moment to 0.46 ppm (2021). arXiv:2104.03281

5. J.A. Miranda, P. Roig, New $$\tau $$-based evaluation of the hadronic contribution to the vacuum polarization piece of the muon anomalous magnetic moment. Phys. Rev. D 102, 114017 (2020). arXiv:2007.11019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3