Abstract
AbstractWe study the dynamics of Majorana fermions in an expanding de Sitter space and to that aim, by making use of the method of mode sums, we construct the vacuum Feynman propagator for Majorana fermions in de Sitter space. The Majorana condition implies nontrivial identities for the mode functions, which we carefully implement. We note that, under charge conjugation, the propagator transforms to minus itself, but do not discuss in detail the topological implications of this observation. We construct the propagator for a general complex mass and find that it is identical to the corresponding Dirac propagator, meaning that the coupling of fermions to the classical de Sitter gravitational background does not violate charge symmetry, i.e. it respects the Majorana condition. The complex mass propagator differs from its real mass counterpart in that the usual positive and negative energy projectors acquire a chiral rotation which depends on the phase of the mass term. We use our propagator to calculate the one-loop effective action for Majorana fermions, and find that it differs from that of Dirac fermions by a factor of 1/2, which accounts for the reduced number of degrees of freedom of the Majorana particle. Finally, we derive the Majorana and Dirac propagators for mixing n fermionic flavors and show that the number of CP-violating phases for Dirac fermions exceeds that of the Majorana fermions by $${n\left( n-1\right) }/{2}$$
n
n
-
1
/
2
. This is vital for understanding how the dynamics of Dirac and Majorana fermions generate different CP-violating effects in the multi-flavor case.
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献