Cherenkov and scintillation separation in water-based liquid scintillator using an LAPPDTM

Author:

Kaptanoglu T.ORCID,Callaghan E. J.,Yeh M.,Orebi Gann G. D.

Abstract

AbstractThis manuscript describes measurements of water-based liquid scintillators (WbLS), demonstrating separation of the Cherenkov and scintillation components using a low energy $$\beta $$ β source and the fast timing response of a Large Area Picosecond Photodetector (LAPPD). Additionally, the time profiles of three WbLS mixtures, defined by the relative fractions of scintillating compound, are characterized, with improved sensitivity to the scintillator rise-time. The measurements were made using both an LAPPD and a conventional photomultiplier tube (PMT). All samples were measured with an effective resolution $$O\left( 100~\text {ps}\right) $$ O 100 ps , which allows for the separation of Cherenkov and scintillation light (henceforth C/S separation) by selecting on the arrival time of the photons alone. The Cherenkov purity of the selected photons is greater than 60% in all cases, with greater than 80% achieved for a sample containing 1% scintillator. This is the first demonstration of the power of synthesizing low light yield scintillators, of which WbLS is the canonical example, with fast photodetectors, of which LAPPDs are an emerging leader, and has direct implication for future mid- and large-scale detectors, such as Theia, ANNIE, and AIT-NEO.

Funder

U.S. Department of Energy

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3