Abstract
AbstractIn this paper, we present an extension of which is able to evaluate tree-level QCD matrix-elements up to $$2\rightarrow 6$$
2
→
6
(one more particle than before). To achieve this, we implemented Berends–Giele-like recursion, and re-implemented the way colour is computed such that we can now expand the colour matrix in powers of $$1/N_c$$
1
/
N
c
and truncate this expansion to a chosen order. For high multiplicity samples, even without truncating the colour matrix, the new implementation offers a speed gain compared to the previous code.
Funder
Horizon 2020 Framework Programme
Fonds De La Recherche Scientifique - FNRS
Vetenskapsråde
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference60 articles.
1. A. Kanaki, C.G. Papadopoulos, Comput. Phys. Commun. 132, 306 (2000). https://doi.org/10.1016/S0010-4655(00)00151-X
2. M. Moretti, T. Ohl, J. Reuter, O’Mega: an optimizing matrix element generator (2001). arXiv:hep-ph/0102195
3. F. Krauss, R. Kuhn, G. Soff, JHEP 02, 044 (2002). https://doi.org/10.1088/1126-6708/2002/02/044
4. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, JHEP 07, 001 (2003). https://doi.org/10.1088/1126-6708/2003/07/001
5. T. Gleisberg, S. Hoeche, JHEP 12, 039 (2008). https://doi.org/10.1088/1126-6708/2008/12/039
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献