Comparison of supervised and unsupervised anomaly detection in Belle II pixel detector data

Author:

Dort KatharinaORCID,Bilk Johannes,Käs Stepahnie,Lange Jens Sören,Peter Marvin,Schellhaas Timo,Schwenker Benjamin,Spruck Björn

Abstract

AbstractMachine learning has become a popular instrument for the search of undiscovered particles and mechanisms at particle collider experiments. It enables the investigation of large datasets and is therefore suitable to operate directly on minimally-processed data coming from the detector instead of reconstructed objects. Here, we study patterns of raw pixel hits recorded by the Belle II pixel detector, that is operational since 2019 and presently features 4 M pixels and trigger rates up to 5 kHz. In particular, we focus on unsupervised techniques that operate without the need for a theoretical model. These model-agnostic approaches allow for an unbiased exploration of data while filtering out anomalous detector signatures that could hint at new physics scenarios. We present the identification of hypothetical magnetic monopoles against Belle II beam background using self-organizing kohonen maps and autoencoders. These two unsupervised algorithms are compared to a Multilayer Perceptron and a superior signal efficiency of the Autoencoder is found at high background-rejection levels. Our results strengthen the case for using unsupervised machine learning techniques to complement traditional search strategies at particle colliders and pave the way to potential online applications of the algorithms in the near future.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference23 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3