Spatiotemporal jumps as particular solutions in geodesic trajectories with the Gödel metric on an extended manifold

Author:

Bellini Mauricio

Abstract

AbstractUsing the Gödel metric, we obtain some relevant solutions compatible with spatiotemporal jumps for the geodesic equations, by using an extension of General Relativity with nonzero boundary terms, which are described on an extended manifold generated by the connections $$\delta \Gamma ^{\mu }_{\alpha \beta } = b\,U^{\mu }\,g_{\alpha \beta }$$ δ Γ α β μ = b U μ g α β . These terms are given by a flow of velocities with components $$U^{\nu }$$ U ν : $$3\,b^2\,\nabla _{\nu }U^{\nu }=g^{\alpha \beta }\, \delta R_{\alpha \beta } = \lambda \left[ s\left( x^{\alpha }\right) \right] \,g^{\alpha \beta }\, \delta g_{\alpha \beta }$$ 3 b 2 ν U ν = g α β δ R α β = λ s x α g α β δ g α β in the varied Einstein–Hilbert action. The solutions are valid for an arbitrary equation of state with ordinary matter: $$\Omega =P/(c^2\,\rho ) = \frac{\left( \frac{\omega }{c}\right) ^2-\lambda (s)}{\left( \frac{\omega }{c}\right) ^{2}+\lambda (s)}$$ Ω = P / ( c 2 ρ ) = ω c 2 - λ ( s ) ω c 2 + λ ( s ) .

Funder

Universidad Nacional de Mar del Plata

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3