Abstract
AbstractUsing the Gödel metric, we obtain some relevant solutions compatible with spatiotemporal jumps for the geodesic equations, by using an extension of General Relativity with nonzero boundary terms, which are described on an extended manifold generated by the connections $$\delta \Gamma ^{\mu }_{\alpha \beta } = b\,U^{\mu }\,g_{\alpha \beta }$$
δ
Γ
α
β
μ
=
b
U
μ
g
α
β
. These terms are given by a flow of velocities with components $$U^{\nu }$$
U
ν
: $$3\,b^2\,\nabla _{\nu }U^{\nu }=g^{\alpha \beta }\, \delta R_{\alpha \beta } = \lambda \left[ s\left( x^{\alpha }\right) \right] \,g^{\alpha \beta }\, \delta g_{\alpha \beta }$$
3
b
2
∇
ν
U
ν
=
g
α
β
δ
R
α
β
=
λ
s
x
α
g
α
β
δ
g
α
β
in the varied Einstein–Hilbert action. The solutions are valid for an arbitrary equation of state with ordinary matter: $$\Omega =P/(c^2\,\rho ) = \frac{\left( \frac{\omega }{c}\right) ^2-\lambda (s)}{\left( \frac{\omega }{c}\right) ^{2}+\lambda (s)}$$
Ω
=
P
/
(
c
2
ρ
)
=
ω
c
2
-
λ
(
s
)
ω
c
2
+
λ
(
s
)
.
Funder
Universidad Nacional de Mar del Plata
Consejo Nacional de Investigaciones Científicas y Técnicas
Publisher
Springer Science and Business Media LLC
Subject
Physics and Astronomy (miscellaneous),Engineering (miscellaneous)
Reference22 articles.
1. N.C. Tsamis, R.P. Woodard, Ann. Phys. 253, 1 (1997)
2. H.J. De Vega, Norma G. Sánchez, Phys. Rev. D 50, 7202 (1994)
3. M. Bellini, Nuovo Cim. B 119, 191 (2004)
4. R.H. Brandenberger, J. Martin, Phys. Rev. D 71, 023504 (2005)
5. Wu. Puxun, Hong Wei Yu, JCAP 0605, 008 (2006)