Self-gravitating anisotropic model in general relativity under modified Van der Waals equation of state: a stable configuration

Author:

Errehymy Abdelghani,Mustafa G.,Khedif Youssef,Daoud Mohammed,Alrebdi H. I.,Abdel-Aty Abdel-Haleem

Abstract

AbstractThe purpose of this paper consists in presenting models of compact stars described by a new class of exact solutions to the field equations, in the context of general relativity, for a fluid configuration which is locally anisotropic in the pressure. With current sensitivities, we considered a non-linear form of modified Van der Waals equation of state viz., $$p_{r}=\alpha \rho ^{2} +\frac{\beta \rho }{1+\gamma \rho }$$ p r = α ρ 2 + β ρ 1 + γ ρ , as well as a gravitational potential Z(x) as a generating function by exploiting an anisotropic source of matter which served as a basis for generating the confined compact stars. The exact solutions are formed by correlating an interior space-time geometry to an exterior Schwarzschild vacuum. Then, we analyze the physical viability of the model generated and compare it with observational data of some heavy pulsars coming from the Neutron Star Interior Composition Explorer. The model satisfies all the required pivotal physical and mathematical properties in the compact structures study, offering empirical evidence in support of the evolution of realistic stellar configurations. It is shown to be regular, viable, and stable under the influence generated by the parameters coming from the theory namely, $$\alpha $$ α , $$\beta $$ β , $$\gamma $$ γ , $$\delta $$ δ , everywhere within the astral fluid in the investigated high-density regime that supports the existence of realistic heavy pulsars such as PSR J0348+0432, PSR J0740+6620 and PSR J0030+0451.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3