Correlation redistribution by causal horizons

Author:

de Gioia L. Pipolo,de Oliveira M. C.ORCID

Abstract

AbstractThe Minkowski vacuum $$|0\rangle _M$$ | 0 M , which for an inertial observer is devoid of particles, is perceived as a thermal bath by Rindler observers living in a single Rindler wedge (Unruh in Phys Rev D 14:870, 1976) as a result of the discrepancy in the definition of positive frequency between the two classes of observers and a strong entanglement between degrees of freedom in the left and right Rindler wedges. We revisit the problem of quantification of the correlations in a two-mode state of a free neutral scalar field which is observed by an inertial observer Alice and left/right Rindler observers Rob/AntiRob, a problem that pertains to the field of relativistic quantum information and has been previously studied in Martin-Martinez et al. (Phys Rev D 82:064006, 2010) and Datta (Phys Rev A 80:052304, 2009). We focus on the analysis of informational quantities like the locally accessible and locally inaccessible information (Koashi and Winter in Phys Rev A 69:022309, 2004; Fanchini et al. in Phys Rev A 84:012313, 2011; Fanchini et al. in New J Phys 14:013027, 2012) and a closely associated entanglement measure, the entanglement of formation. We conclude that, with respect to the correlation structure probed by inertial observers alone, the introduction of a Rindler observer gives rise to a correlation redistribution which can be quantified by the entanglement of formation. Given the informational meaning of the derived correlations, we discuss on the capacity of a quantum channel to communicate classical information between accelerated parties.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3