Decoherence and Landauer’s principle in qubit-cavity quantum-field-theory interaction

Author:

Xu HaoORCID,Chen Si Yu,Ong Yen Chin

Abstract

AbstractWe consider quantum decoherence and Landauer’s principle in qubit-cavity quantum field theory (QFT) interaction, treating the qubit as the system and cavity QFT as the environment. In particular, we investigate the changes that occur in the system with a pure initial state and environment during the decoherence process, with or without energy dissipation, and compare the results with the case in which the initial state of the system is a mixed state and thus decoherence is absent. When we choose an interaction Hamiltonian such that the energy and coherence of the system change simultaneously, the population change of the system and the energy change are the same when the initial state is mixed. However, the decoherence terms increase the von Neumann entropy of the system. In this case the energy change and decoherence of the system are not independent physical processes. The decoherence process maintains unitarity. On the other hand, if the interaction Hamiltonian does not change the energy of the system, there is only the decoherence effect. The environment will be a distribution in the basis of the displaced number state and always increases the energy. Landauer’s principle is satisfied in both cases.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3