A novel definition of complexity in torsion based theory

Author:

Bhatti M. Z.ORCID,Yousaf Z.,Hanif S.

Abstract

AbstractDespite coming across quite effective definitions of complexity in terms of many modified theories of gravity, it still has a question about its existence in f(T) gravity, where the torsion scalar T is accountable for gravitational impacts. The emergence of complexity factor is due to division of intrinsic curvature in an orthogonal way as described by Herrera (Phys Rev D 97:044010, 2018). To initiate the analysis, we reckon the interior region is like a spherically symmetric static configuration filled by the locally anisotropic fluid and exteriorly associated with a spherical hypersurface. In this framework, we acquire the f(T) field equations and utilize the already formulated relationship between the intrinsic curvature and the conformal tensor to perform our analysis. We bring into action the definitions of the two frequently availed masses (Tolman and Misner–Sharp) for spherical composition and investigate the appealing correlation between them and the conformal tensor. The impact of the local anisotropy and the homogeneity and inhomogeneity of energy density has substantial importance in this regard. We build up some relation in terms of already defined variables and interpret the complexity as a single scalar $$Y_{TF}$$ Y TF . It deduce that this factor vanished when the fluid content is homogenous and also when the impact of two anisotropic terms cancel out in the case of inhomogeneous fluid content. We determine a few definite interior solutions which fulfill the criterion of vanishing scalar $$Y_{TF}$$ Y TF . Certain defined ideas in fulfillment of the vanishing complexity factor constraint, are applied for f(T) gravity.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3