Optimising longitudinal and lateral calorimeter granularity for software compensation in hadronic showers using deep neural networks

Author:

Neubüser CoralieORCID,Kieseler JanORCID,Lujan PaulORCID

Abstract

AbstractWe investigate the effect of longitudinal and transverse calorimeter segmentation on event-by-event software compensation for hadronic showers. To factorize out sampling and detector effects, events are simulated in which a single charged pion is shot at a homogenous lead glass calorimeter, split into longitudinal and transverse segments of varying size, and the total energy loss within each segment is used as the signal. As an approximation of an optimal reconstruction, a neural network-based energy regression is trained based on these signals. The architecture is based on blocks of convolutional kernels customized for shower energy regression using local energy densities; biases at the edges of the training dataset are mitigated using a histogram technique. With this approximation, we find that a longitudinal and transverse segment size less than or equal to 0.5 and 1.3 nuclear interaction lengths, respectively, is necessary to achieve an optimal energy measurement. In addition, an intrinsic energy resolution of $$8\%/\sqrt{E}$$ 8 % / E for pion showers is observed.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The optimal use of segmentation for sampling calorimeters;Journal of Instrumentation;2024-06-01

2. Leveraging staggered tessellation for enhanced spatial resolution in high-granularity calorimeters;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2024-03

3. A high-granularity calorimeter insert based on SiPM-on-tile technology at the future Electron-Ion Collider;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3